Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity

نویسندگان

  • Klaus Neumann
  • Jochen J. Steil
چکیده

Extreme learning machines are randomly initialized single-hidden layer feedforward neural networks where the training is restricted to the output weights in order to achieve fast learning with good performance. This contribution shows how batch intrinsic plasticity, a novel and efficient scheme for input specific tuning of non-linear transfer functions, and ridge regression can be combined to optimize extreme learning machines without searching for a suitable hidden layer size. We show that our scheme achieves excellent performance on a number of standard regression tasks and regression applications from robotics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Batch Intrinsic Plasticity for Extreme Learning Machines

Extreme learning machines are single-hidden layer feed-forward neural networks, where the training is restricted to the output weights in order to achieve fast learning with good performance. The success of learning strongly depends on the random parameter initialization. To overcome the problem of unsuited initialization ranges, a novel and efficient pretraining method to adapt extreme learnin...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

A Robust and Regularized Extreme Learning Machine

In a moment when the study of outlier robustness within Extreme Learning Machine is still in its infancy, we propose a method that combines maximization of the hidden layer’s information transmission, through Batch Intrinsic Plasticity (BIP), with robust estimation of the output weights. This method named R-ELM/BIP generates a reliable solution in the presence of corrupted data with a good gene...

متن کامل

Stable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems

‎Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated‎. ‎In this paper‎, ‎we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties‎, ‎and we prove the global ...

متن کامل

A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines

Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2013